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1. Introduction 

 Too many researchers find themselves in a quandary when trying to assess the fit of an 

econometric model with a dichotomous dependent variable (DDV), such as probit or logit. The 

R-squared from the linear model is not available and some of the older readings on the topic 

point to a multitude of competing measures without providing clear evidence of their absolute or 

relative merits. Estrella (1998) proposed a new pseudo R-squared and showed that it consistently 

outperforms the other existing measures in a series of tests.  

 Since then, many applied researchers have taken advantage of the new measure and 

several major econometric and statistical software packages have incorporated it into their DDV 

routines and in their documentation.1 Yet, some applied researchers continue to employ other 

measures that have serious shortcomings. The main purpose of the present article is to present 

new evidence that shows conclusively that the 1998 measure is the only reliable and interpretable 

choice to evaluate the fit of a DDV model.2  

 Researchers who already use the 1998 measure will find in these new results a deeper 

understanding of the measure as well as mathematical links to other DDV model statistics. 

Researchers who are still undecided about which measure to use should benefit from the clear 

comparative results that reveal important shortcomings of alternative measures. Finally, 

researchers who are unaware of the 1998 measure will have a chance to study the evidence and 

make an informed decision. 

 
1 A review of the documentation for a sample of statistical packages shows that some have incorporated the Estrella 
(1998) measure as the default R-squared for DDV models (RATS: Estima (2014), TSP: Hall and Cummins (2009)), 
some have included it in the output or documentation as one of several alternatives (LIMDEP: Greene (2012), SAS: 
SAS Institute (2021), SHAZAM: Whistler et al. (2011)) and some focus only on the ad hoc measures existing prior 
to 1998 (EViews, R, SPSS, Stata). 
2 As noted in Estrella (1998), the pseudo R-squared may also be applied to non-DDV models in which the average 
log likelihood ratio is bounded, such as multinomial logit and probit. For conciseness, the concrete analysis 
presented here is limited to the DDV case. 
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 Admittedly, some readers may question the need for an R-squared at all. They may 

propose, for example, that testing for statistical significance is more important than assessing the 

fit of a model. But statistical significance by itself may not provide sufficient substantive 

information in a real-world application.3 

 Also, statistical significance by itself may be misleading. Anyone who consumes 

microeconomic research has run into cross-section or panel estimates with 10,000 observations 

in which everything is significant at the 1% level. However, if the R-squared is close to zero, the 

real-world information content of the model may be wanting. 

 The present article differs from the earlier literature that evaluates pseudo R-squared 

measures in several ways. First, rather than considering afresh the dozen or so measures that 

have been proposed historically, the field is narrowed to four candidates by eliminating the ones 

that previous analysis has shown to be clearly deficient in at least one important aspect. Section 2 

identifies the four measures, all of which appear in some recent empirical work, and presents a 

brief review of previous tests.  

 Second, the analysis delves into foundational issues that make the construction of a 

measure of fit especially challenging in the DDV case. In particular, Section 3 examines the 

issue of boundedness of the average likelihood ratio statistic for a DDV model and applies the 

concepts of entropy and conditional entropy to compare the relative information content of 

dichotomous and continuous random variables. The components of the likelihood ratio test are 

seen to have clear interpretations in terms of entropy, which may be used in the evaluation of the 

pseudo R-squared measures. 

 
3 For example, Estrella and Mishkin (1998) found that a yield curve spread and the S&P 500 index were both 
statistically significant at the 1% level in separate probit equations to forecast U.S. recessions four quarters ahead.  
However, they also reported that the Estrella (1998) R-squared was .296 for the yield curve and .043 for the S&P. A 
policymaker or an investor would surely find that additional information useful. 
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 Finally, Sections 4 and 5 compare the four candidates in terms of their general 

mathematical properties and in terms of their quantitative statistical performance, respectively. 

All the evidence points in the direction of the 1998 measure, but the quantitative tests in Section 

5 show the differences most starkly. The main weakness of the other measures is a strong 

dependence on the mean of the dependent variable, which in the linear model does not influence 

R-squared as a measure of fit. 

 

2. Brief review of earlier results 

 Estrella (1998) argued that for a pseudo R-squared to have an interpretation comparable 

to the linear model R-squared, it should satisfy the following three conditions.  

1. The value of the measure should lie in the unit interval, with 0 representing “no fit” 

and 1 representing a “perfect fit.”  

2. The measure should be based on a valid test statistic of the hypothesis 0H  that all the 

coefficients of the model, except for the constant term, are zero.  

3. The rate of growth of the measure with respect to the test statistic should be 

comparable to that of the linear model.  

The derivation of the pseudo R-squared in Estrella (1998), reviewed later in this section, was 

based on solving a differential equation that gave precise mathematical meaning to those three 

goals. 

 The present analysis considers only those measures that have the potential to satisfy all 

three of the above criteria. Measures based on second moments are not included because the 

ordering of models they generate may differ from the ordering based on proper maximum 
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likelihood tests of 0H . Two likelihood-based measures from the 1998 article are also excluded 

because they are subject to upper bounds substantially less than 1.  

 That leaves four measures, denoted here as follows, defining Lc  and Lu  as the 

constrained (constant term only) and unconstrained log likelihood of the model and n as the 

number of observations. 

  22 1 Lc nR e Lu Lc    from Estrella (1998) 

2 1R m Lu Lc   from McFadden (1974) 

 
 

2

2

1 exp
2

1 exp

n

n

Lc Lu
R cu

Lc
 




 from Cragg and Uhler (1970) 

 
 
2 22

2 2
Lu Lc Lc nR vz

Lu Lc n Lc
 

 
 

 from Veall and Zimmermann (1992) 

 Three of these measures may be interpreted as adopting their mathematical form from the 

relationship between R-squared and the average value of one of the classical statistics used to 

test 0H  in the linear model. To be precise, the test may be performed using the Lagrange 

multiplier statistic LM (estimating under the null hypothesis), the Wald statistic W (estimating 

under the alternative hypothesis) or the likelihood ratio statistic LR (estimating under both the 

null and the alternative). These tests are asymptotically equivalent in the linear model. 

Define the average values of the three statistics as 

, ,ALM LM n AW W n ALR LR n   . Then the linear model R-squared has the following 

alternative exact expressions. 

    2 1 exp 1R ALM ALR AW AW      .  
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Each of the three average statistics has a value of 0 when the model does not fit at all ( Lu Lc ), 

but as the fit improves, ALM is bounded above by 1 while AW and ALR are unbounded. These 

ranges are all consistent with R-squared values that go from 0 to 1. 

 In the DDV case, all four pseudo R-squared measures under consideration here are based 

explicitly or implicitly on the DDV average likelihood ratio statistic, which we denote as 

 2A Lu Lc n  . Values of this statistic range from zero to an upper bound 2B Lc n  . Now 

          log 1 log 1Lc n E y E y E y E y    , where  E y  is the mean value of the DDV, 

so this mean is the sole determinant of the upper bound B. Using this relationship, we see that the 

value of B lies in the range  0 log 4 1.386B   . 

 The upper bound B is shown in Figure 1 as a function of  E y . The function is 

symmetrical around   1
2E y  , so that  E y  and  1 E y correspond to the same upper bound. 

In the subsequent analysis, the lower of these two proportions will generally be used, but the 

results apply symmetrically to the other value as well. The figure shows vertical lines at .05, .20 

and .50, which will be used in various numerical illustrations as representative of the range of 

values encountered in practice. In the context of Figure 1, the pseudo R-squared measures have 

to deal with two basic issues: how high is B for a given  E y  and how fast should the measure 

scale the slope from zero to B? 

 A simple mechanical way to construct a pseudo R-squared for the DDV case is to take 

one of the formulas that apply to the linear model and substitute into it the DDV likelihood ratio 

statistic A. Thus, one could use the value of A itself to correspond with ALM,  1 exp A   to 

correspond with ALR or  1A A  to correspond with AW. In fact, the last two forms have been 
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suggested in the literature, but they are unsatisfactory because their upper bounds are much 

lower than 1. The first alternative does not seem to have been proposed. 

 One way to make each of these alternatives fall in the desired range is to divide them by 

their respective upper bounds. This scaling adjustment is certainly not arbitrary, but it seems ad 

hoc in the absence of further information. The resulting measures are 2R m A B , 

     2 1 exp 1 expR cu A B      and       1
2 1 1R vz A A B B


    , as may be verified 

by substituting the definitions of A and B and comparing with the expressions given earlier. 

 Measure R2e is constructed differently, based on the argument that as the average 

likelihood ratio of a model grows, the measure of fit should increase at a rate comparable to that 

implied by the linear model. Rather than choose a particular functional form, the idea is to model 

marginal R-squared as inversely related to the proportional distance between A and its upper 

bound. Marginal R-squared is defined here as the derivative of the measure of fit in proportion to 

the difference between its level and the maximum value of 1, so the resulting differential 

equation is 

 
   1 2

1 2
d BR A

R A dA B A


 
.  

 Imposing the boundary condition  2 0 0R  , the solution to the differential equation is 

the measure  2 1 1 BR e A B   . The solution also satisfies  2 1R B   and  2 0 1R   . This 

last condition is satisfied by the three alternative measures in the linear model and is consistent 

with the objective of making the rate of growth consistent with the linear case. 

 Note that this technique also produces the correct R-squared formula in the linear model. 

In that case, there is no upper bound to ALR and, letting B  , the proportional distance on the 
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right-hand side of the differential equation becomes   1B A B  . The solution to this 

alternative equation, subject to  2 0 0R  , is    2 1 expR A A   , which is the relationship 

between the average likelihood ratio statistic and R-squared in the linear model. 

 The four pseudo R-squared measures considered here were subjected in Estrella (1998) to 

a number of tests, the results of which are briefly summarized as follows. 

 Derivative at A=0: It may be verified that E2e is the only measure that has a unit 

derivative at A=0, as all the linear model measures do. The derivatives of E2cu and E2vz are 

always larger and for E2m, the derivative is 1 only if the expected value of the DDV is .1997 or 

.8003. 

 Odds ratio: In a model in which both the dependent (y) and independent (x) variables are 

dichotomous, the critical value of the odds ratio was computed for a constant p value and for 

various combinations of ( )E x  and ( )E y . Values of the four pseudo R-squared measures 

corresponding to the critical values were generated. Results for R2e were virtually constant 

across all cases, which is consistent with the constant p value, whereas E2m, E2cu and E2vz had 

values that were strongly inversely related to ( )E y . 

 F statistic: In the linear model, R-squared may be transformed into an F statistic to test 

0H  by taking    2 21 1F R R n k k     , where n is the number of observations and k is the 

number of nonconstant regressors. For the two extreme DDV cases of ( )E y = .05 and .50, 

critical values of the likelihood ratio test for 0H  were computed at the .01, .05 and .10 levels of 

significance. Values of the four pseudo R-squared measures were generated from the critical 

values and transformed into F levels using the formula above. The level of significance was then 
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computed from the F distribution. Results for R2e were virtually the same as the DDV 

significance levels, but they were exceptionally different for the other three measures. 

 Overall, Estrella (1998) presented compelling evidence that favored measure R2e, both in 

terms of mathematical properties and statistical performance. Having narrowed the present field 

to four measures, Sections 4 and 5 present the results of new tests that reveal further sharp 

differences in the performance of the measures.  

Before proceeding to the tests, however, it is helpful to explore further the boundedness 

of the average likelihood ratio statistic in the DDV case, which we have seen is a complicating 

factor in the construction of an R-squared measure.  

 

3. Entropy, the upper bound B and residual uncertainty 

3.1 Entropy and the upper bound 

 The asymptotic properties of the likelihood ratio test of 0H  are very similar whether the 

model is linear with a continuous dependent variable or nonlinear with a DDV. In both cases, the 

large-sample distribution of the test is chi square with k degrees of freedom, the latter 

representing the number of additional parameters included in the alternative hypothesis.4 Why 

then is the test statistic bounded above only in the DDV case? The reason has to do with the 

amount of information that would have to be obtained to explain the dependent variable 

completely. 

 As an example, suppose that a DDV represents an event that happens 99% of the time, 

and suppose that I want to predict the outcome of the next observation. If I forecast that the event 

will occur, using no other information, I will be right 99% of the time. This prediction is not 

 
4 This result is known as the Wilks Theorem. See, for example, Wilks (1938).  
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difficult, but improving on it by incorporating additional information is hard because there is so 

little room for improvement. In contrast, a DDV corresponding to an event that happens 50% of 

the time is hard to predict but leaves much more room for improvement in the sense that 

additional information could increase predictive power substantially. 

 Entropy is a measure of how much information there is to be learned about a random 

variable. In the case of a DDV y that takes the values 0 and 1, entropy is defined as  

            
          

1 log 1 1 1 log 1 1

log 1 log 1 .

H y P y P y P y P y

E y E y E y E y

        

    
 

H is positive by construction and reaches its highest level when    1 .5P y E y   , at which 

 log 2 .693H   .5  

 Comparing the expression for H with the definition of B in Section 2 shows that 

H Lc n  , hence that 2B H . Thus, the reason that the average likelihood ratio statistic is 

bounded above by B is the limited information content of the DDV y, and this limit is a function 

solely of the mean of the variable. The multiplier 2 comes from the derivation of the likelihood 

ratio test statistic so that it follows asymptotically a chi-square distribution. Graphically, the 

function H has the same shape as the upper bound B seen earlier in Figure 1, but half the 

magnitude. 

 In the linear model, the dependent variable is usually a continuous random variable, 

which as far as entropy goes is very different from a DDV. Entropy for a continuous random 

variable may be defined by discretizing the probability density function over intervals of length 

 
5 In this definition, log is the natural logarithm and for that reason the function is sometimes called natural entropy. 
An alternative in information theory is to use the base 2 logarithm so that entropy is expressed in terms of bits rather 
than natural log units or nats. The natural scale fits better with the likelihood ratio application. The entropy concepts 
used in this section are explained in detail in textbooks on information theory such as Cover and Thomas (2006). 
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  and taking the limit of the sum of  logi ip p  over these discrete terms as 0 . In that 

case, the result includes a term that may be finite plus a component of the order of 

 log ,    which is consistent with the unboundedness of entropy and the test statistic in the 

linear model case.  

 To compare the entropy of a continuous dependent variable with the DDV case, it is 

helpful to examine the finite component of the limit of the sum described above, which is known 

as differential entropy. It does not represent the absolute level of entropy, but it is commonly 

used to compare the difference in entropy for pairs of continuous random variables, since the 

infinite components corresponding to the two variables may be thought of as offsetting one 

another.  

 To illustrate the concept of differential entropy, suppose that  f x  is the normal density 

function with mean   and variance 2 . Its differential entropy is defined as 

      21
2log log 2h f x f x dx e 




   . In this case, differential entropy is an increasing 

function of the variance 2  and, although h is finite for a given value of 2 , it is unbounded as a 

function of 2 . 

 Since the entropy of a continuous random variable is unbounded, the average likelihood 

ratio statistic for a linear model with a continuous dependent variable is not subject to an upper 

bound. However, only models that fit the data well are likely to have an ALR that exceeds the 

levels attainable in models with DDVs. We can be more precise about this point by employing 

the asymptotic distribution of the likelihood ratio statistic LR. 

 In a linear model with k nonconstant explanatory variables and n observations, 

LR n ALR   follows asymptotically a chi-square distribution with k degrees of freedom. We 
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can use this result to estimate the probability that the linear model ALR exceeds any given value, 

say a level that falls within the bounds of standard DDV models. 

 Consider the value of B from a model in which the DDV has a mean of .05. In that case, 

.397B  . Applying the large-sample distribution, the estimated probability that the linear model 

ALR exceeds this level is very sensitive to the number of observations and to the number of 

variables in the model. For example, when 100n   and 1k  , the probability that ALR exceeds 

.397 is very low, on the order of 1010 . In contrast, with 50n   and 10k  , the probability 

increases to .03.  

 Thus, in a linear model with a large data sample, it is possible that the average likelihood 

ratio statistic may surpass the upper bound for a realistic DDV model, but it is generally a low 

probability event. These higher levels are attained only by models that perform very well in 

terms of level of significance and fit. In the DDV case, applying the linear model R-squared 

formula directly would severely constrain the possible range of values and would result in 

underestimating the performance of well-fitting models. 

 

3.2 Conditional entropy and residual uncertainty 

 The related concept of conditional entropy may be introduced to help with the 

interpretation of two of the pseudo R-squared measures under consideration. Suppose that y is a 

DDV and that x is a potential explanatory variable, not necessarily dichotomous. The conditional 

entropy of y with respect to x, denoted by  |H y x , represents the amount of information in y 

that remains unexplained after the effects of x are taken into account. If x is a continuous random 

variable with density function  f x  and support set S, then 
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              | 1| log 1| 1 1| log 1 1|
S

H y x P y x P y x P y x P y x f x dx           . 

 Heuristically, conditional entropy is the information contained in the residual of a 

regression equation. Since entropy  H y  corresponds to the information content of the 

dependent variable, the ratio      | |U y x H y x H y  represents the portion of the 

information in the dependent variable that is not explained by the regression. It may be 

interpreted as a proportional measure of residual uncertainty. 

 We saw earlier that in a DDV equation,  H y Lc n   and  2B H y . Similarly, 

when the DDV model contains only x as the explanatory variable,  |H y x Lu n   and 

    2 |A H y H y x  . Combining these relationships,  1 |A B U y x  , which implies that 

two of the four pseudo R-squared measures may be defined in terms of the entropy ratio U.6  

 One case is  2 1 |R m U y x  . If the focus of interest is on the entropy ratio, measure 

R2m provides the most direct information for that purpose. In fact, McFadden (1974) suggests 

that R2m is analogous to “the ‘mean squared error’ explained or the ‘variance’ explained.” Since 

R2m is the complement of the entropy ratio, which represents residual uncertainty, the measure 

may be interpreted as the proportion of the DDV entropy explained by the model.  

 However, this interpretation does not imply that R2m is a reliable measure of fit along the 

lines of the traditional R-squared. In the linear case, the interpretation in terms of “the proportion 

of variance explained” is associated with the Lagrange multiplier statistic, not with the likelihood 

ratio statistic on which R2m is constructed. Specifically, for the linear model, 

1ALM URSS RRSS  , where the terms on the right-hand side correspond to the unrestricted 

 
6 The other two measures depend on A and B separately rather than on their ratio. 
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and restricted residual sum of squares. When the restriction is 0H , that is, there is only a constant 

term in the linear equation, the ratio represents the variance of the residual in the full equation as 

a proportion of the variance of the dependent variable.  

 The problem is that R2m is not constructed from the Lagrange multiplier statistic, but as a 

linear rescaling of the average likelihood ratio statistic, which even in the linear model is a 

nonlinear function of both the sum of squares ratio and of R-squared. The mathematical 

relationships are given by    2log log 1ALR URSS RRSS R     . Thus, to convert the 

average likelihood ratio into a reliable measure of fit requires a nonlinear transformation, as will 

be clear in Section 4. In addition, the quantitative analysis in Section 5 points to serious problems 

with the use of R2m as a measure of fit, notwithstanding its close connection with the entropy 

ratio. 

 The second measure that is definable in terms of the entropy ratio is R2e, since the 

reciprocal of the entropy ratio is the driving function in the differential equation from which the 

measure is derived:       1 11 2 2 |R e A dR e A dA U y x
   . The idea is to make marginal R-

squared inversely related to the proportion of the information that remains to be explained. The 

solution to the differential equation, taking account of the implicit dependence of  |U y x  on A, 

may be expressed in terms of entropy as    22 1 | H yR e U y x  . Sections 4 and 5 will show that 

the adjustment in the exponent of U, as compared with the linear expression for R2m, makes the 

measure much more robust, particularly with respect to differences in the level of  E y .  

 Returning to the linear model, the relationship between entropy and the likelihood ratio 

statistic is straightforward if the variables are normally distributed. Let  2~ ,y N    be the 
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dependent variable and assume that all the regressors are also normally distributed. Then the 

variance of the residual may be expressed as    2 2 2 21 expu R ALR      .  

 Using the expression given earlier for the differential entropy of a normal variable, the 

difference between the differential entropy of the dependent variable and the conditional 

differential entropy of the model is 

        2 21 1 1
2 2 2| log 2 log exp 2h y h y x e ALR e ALR        .  

Much as in the DDV model,     2 |ALR h y h y x  . An important difference is that in this 

case ALR is unbounded and so is    |h y h y x .  

 

4. Mathematical properties of the pseudo R-squared measures 

 This section compares the mathematical properties of the four pseudo R-squared 

measures as functions of the likelihood ratio statistic. Table 1 collects expressions for the 

functions themselves, their derivatives, and other transformations, all in terms of the average 

likelihood ratio statistic  2A Lu Lc n   and its upper bound 2B Lc n  . This notation 

facilitates comparisons across measures. 

 Consider first the functions themselves. It is clear from the first row of Table 1 that the 

four measures have distinct functional forms, which could be described as power, linear, 

exponential and rational. For this reason, they will tend to give different signals for most values 

of A and B, other than at the two extreme points for A. The only case in which two measures 

coincide is when 1B   (   .1997 or .8003E y  ), for which 2 2R e R m . Note that all the 

functions depend only on A and B. In particular, they do not depend on sample size directly, 

although sample size is used in the calculation of the averages A and B.  
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 Inspection of the first row of Table 1 also shows that all four measures satisfy the first 

goal for a pseudo R-squared, as proposed at the beginning of Section 2. The range of each of the 

functions is the unit interval [0,1], they cover the full range as A goes from 0 to B and the 

function values at the endpoints correspond to “no fit” and “perfect fit,” respectively.  

 For measures R2m, R2cu and R2vz, the unit value at A B  is achieved by multiplicative 

rescaling, with the denominator in each case representing the value of the numerator when 

A B . This rescaling is designed to adjust the value of the function at this single point, but its 

application affects the level of the function and its derivatives for all values of A.  

 The consequences of the rescaling are illustrated in the top two panels of Figure 2. The 

left panel shows the measures before rescaling, defined as 2R mu A ,  2 1 expR cuu A    and 

 2 1R vzu A A  . The values of the unscaled measures are very similar to the linear model R-

squared for low values of A. In fact, R2cuu is the exact linear model formula. Scaling problems 

for the unadjusted measures increase gradually as the value of A grows, especially when it gets 

closer to the upper bound B. Multiplicative rescaling is a perfect solution to the problem at the 

right endpoint, but at the cost of changing the levels for all values of A by the same proportion, 

including the low values of A where change was unnecessary and undesirable. 

 The top right panel of Figure 2 shows the actual adjusted measures for   .05E y   and 

compares them with the linear model. Constant proportional rescaling drives all three measures 

upwards far from the linear model, even for low values of A where scaling issues were minor.  

 In contrast, for R2e, the unit value at A B  is obtained organically by solving a 

differential equation, as shown earlier. As in the linear model, the derivative of R2e is driven by 

the inverse of the proportional distance to the upper bound, so the extent of the rescaling adjusts 

smoothly as the value of A increases.  
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 The results are illustrated in the bottom two panels of Figure 2, which compare R2e with 

the linear model for two values of the DDV mean. For low values of A, where rescaling is not 

much of an issue, the differential equation approach keeps the value of R2e close to the linear 

model. As A grows, the adaptive scaling drives the measure increasingly upwards, away from the 

linear model, to reflect the growing closeness to a perfect fit for the model. 

 The bottom right panel of Figure 2 shows the levels of R2e for   .50E y  , which 

corresponds to the largest possible level of the upper bound B. As the upper bound increases, the 

R2e function gets closer to the linear model, and this panel shows the closest correspondence 

feasible given the limited information content of a DDV. 

 Turning to the derivatives in the second row of Table 1, consider first their values when 

0A  . The derivative of R2e at this point is 1, which matches the derivative in the linear model. 

For measures R2cu and R2vz, the initial growth rate is above 1, suggesting that they overstate the 

fit of the model, at least at lower levels of A. For R2m, the relationship of the initial growth rate 

to unity depends inversely on B. The rate equals 1 in the special case when 1B  , but otherwise 

this measure starts growing faster or slower than in the case of the linear model. 

 Marginal R-squared appears in the third row of Table 1, defined as in Section 2 as 

    1
1 2 2R i A dR i A dA


 , where i  represents one of the four pseudo R-squared functions 

under consideration. Whereas the derivative is the rate of growth in absolute terms, marginal R-

squared looks at the derivative in proportion to the distance from the current level of the function 

to the maximum value of 1. At 0A  , this distance is 1 so that marginal R-squared is the same 

as the derivative.  
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For the linear model,  2 1 expR A    and marginal R-squared as a function of A is 

always 1. Among the DDV measures, R2e is the only one for which marginal R-squared at 

0A   is 1 regardless of the DDV mean.  

 Table 1 also shows that marginal R-squared is predominantly an increasing function of A 

and that it goes to infinity as A approaches the upper bound B. Intuitively, the boundedness of A 

in the DDV case makes it necessary for each pseudo R-squared function to speed up as A 

approaches B so as to reach its upper bound when the fit is perfect. The only partial exception is 

R2vz, for which marginal R-squared has a small downward slope in the range  0 1 2A B    

if 1B  . 

 Among the DDV measures, R2e is the only one whose marginal R-squared may be 

expressed solely in terms of the entropy ratio 1U A B  , as defined in Section 3. For each of 

the measures, substituting  1A B U   into the expression for marginal R-squared converts it 

into a function of U and B only, but R2e is the only case in which dependence on B, and hence 

on  E y , drops out completely. Section 5 will show quantitatively that this independence from 

 E y  makes the measure more robust. 

 A generalization of the differential equation from which R2e is derived suggests that the 

condition that the derivative at 0A   equals 1 is important to make the measure and its marginal 

R-squared less sensitive to differences in  E y . Consider the generalized differential equation 

 
   1 22

1 2 1
d CR A

R A dA C A


 
.  

The expression on the left is marginal R-squared and the right-hand side represents the reciprocal 

of the distance between A and a benchmark level C1, scaled by a constant C2. Three boundary 
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conditions are imposed,  2 0 0R  ,  2 1R B   and  2 0 1R   , which together determine the 

values of C1, C2 and the constant of integration.  

 With the single boundary condition  2 0 0R  , the solution to the general differential 

equation is   22 1 1 1 CR A C   . If in addition, we impose the condition that  2 1R B  , we 

have that 1C B  and   22 1 1 CR A B   . Finally, the third condition  2 0 1R    implies that 

2C B , so that  2 2 1 1 BR R e A B    .  Thus, the right-hand side of the differential equation 

reduces to   1 11 A B U   .  

 Measure R2m may be derived in a similar way by imposing the first two boundary 

conditions, but not the third, stipulating instead that  2 0 0R    so that the function is linear. 

This condition implies that 2 1C   and the result is 2R m A B . In this case, the right-hand side 

of the differential equation becomes    1 1B A BU   , which depends on B even after 

controlling for U.  

 One final point about the mathematical properties of the measures is based on 

counterfactual analysis of their functional forms, undertaken by allowing the upper bound B to 

approach infinity. We have seen that in the linear model, ALR is unbounded. So, what happens if 

we take the limit of any of the pseudo R-squared functions as B approaches infinity and apply the 

resulting function to the linear model ALR? 

 Despite their difference in functional form for finite B, the limit of both R2e and R2cu is 

 2 1 expR A   , which matches the linear case exactly. The other two measures produce very 

different results. In the case of R2m, the limit of the function is zero, which it is not useful for 

these purposes. In the case of R2vz, the result is  1A A . As in the linear case, this expression 
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is increasing in A and converges to 1 in the limit as A approaches infinity. However, the level of 

this expression is uniformly lower than the linear model R-squared and would consistently 

understate the fit for any positive value of ALR.  

 In summary, the results of this counterfactual experiment clearly favor R2e and R2cu. 

The result for the latter is not unexpected, as the construction of R2cu may be interpreted as the 

direct application of the linear model relationship followed by multiplicative rescaling based on 

its upper bound. Taking the limit undoes the rescaling. The limiting function of R2e is perhaps 

less obvious but is nevertheless indicative of a fundamental correspondence in form with the 

linear case R-squared. 

 

5. Evidence of statistical performance 

 This section turns to evidence based on the statistical properties of the four measures. The 

strategy consists primarily of performing numerical comparisons of the values of the different 

measures while controlling for the significance level of the likelihood ratio test and for the mean 

of the DDV.  

 The tests examine the internal consistency of each measure as  E y  is allowed to vary 

for fixed n and k, while keeping constant the level of significance of the chi square test for 0H . 

Ideally, the value of each measure would remain constant across these changes in the DDV 

mean, as the level of significance is held fixed. That result clearly holds in the linear case, where 

R-squared is independent of the mean of the dependent variable. The values of the measures are 

also compared with the linear model R-squared for the same level of significance. 

 In the DDV case, the upper bound B creates complications and a dilemma. If the measure 

of fit is to have a value of 1 when the fit is perfect, as is the case with the four measures we are 



20 
 

considering, the function that defines each measure must depend on B and hence on  E y , all 

else equal. Therefore, the goal of total independence of the value of the measure from  E y  for 

a constant level of significance is not strictly attainable. A compromise solution admits a small 

degree of dependence on  E y  for the range of parameter values most often encountered in 

practice. This compromise is possible with only one of the R-squared measures. 

 To set up the experiment, it is convenient to express each pseudo R-squared measure as a 

reduced-form function of four base parameters: the level of significance p, the number of 

explanatory variables k, the sample size n and the DDV mean  E y . Table 1 gives an expression 

for each measure in terms of A and B. The fact that B is a function of the mean of the DDV has 

already been established. The statistic A may be expressed as a function of the other three 

parameters.  

 Specifically, the value of A satisfies the equation  ; 1F nA k p  , where  ;F k  is the 

chi square cumulative distribution function with k degrees of freedom. Since the cumulative 

distribution function is strictly increasing in A, n and k, the relationship may be inverted to obtain 

the implicit function  , ,A p k n , where A depends inversely on p and n and directly on k. 

 If R2i represents one of the four measures, we may substitute the foregoing relationships 

for A and B to write it in the form   2 , , ,R i p k n E y . Dependence on the parameters that enter 

through A has the same sign as for A so that 2 0R i p   , 2 0R i k    and 2 0R i n   .  

 In addition, each R2i depends inversely on the mean of the DDV for   1
2E y  .7 In three 

of the four cases, this result is easy to show by taking the derivative with respect to B of the 

 
7 The results are symmetrical for E(y) above ½. 
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logarithm of the function, since we have seen that B and  E y  are positively related in the range 

considered.  

 log 2 1R m B B      

      log 2 exp 1 expR cu B B B         

     1
log 2 1R vz B B B


      

In the case of R2e, the derivative is more complicated, but its form may be simplified by 

expressing it as a function of the entropy ratio 1U A B   defined in Section 3. 

 1 log2 1BU Ue U UR B          

Second-order series expansion of the term in square brackets at 1U   shows that it is positive, 

so that the derivative is negative like the others. 

 Thus, as expected, none of the four measures is strictly insensitive to changes in the mean 

of the DDV when  , ,p k n  are held fixed, which would be ideal. In fact, all four measures 

decline as the DDV mean increases in the range   1
2E y  . The question is by how much. Since 

the values of the derivatives are difficult to compare analytically, it is helpful to plot the 

measures as functions of  E y  for representative values of the other parameters and to compare 

the results graphically. 

 Figure 3 displays the values of the measures for .01p  , 1k  , 100n   and with  E y  

running continuously on the horizontal axis from .05 to .50. Since every point in the graph 

represents the same level of statistical significance with the same number of explanatory 

variables and number of observations, there should be in principle close uniformity in the values 

of the all the measures of fit across the board.  
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 The actual results show clearly that that is not the case, and the difference between R2e 

and the other measures is striking. Other than R2e, the levels of the measures start out very high, 

then fall sharply and eventually flatten out. R2cu and R2vz remain well above the others 

throughout, again suggesting that they tend to overstate the fit of the underlying model. R2m 

starts out almost as high as the other two, but then falls until it crosses below the level of the 

linear model just beyond the   .20E y   point, and it remains below that level as it flattens out.  

 Measure R2e is clearly much more stable than the others, which is consistent with the 

constant level of significance. There is a slight uptick as the DDV mean approaches .05, but the 

curve is very flat throughout the broad range of mean values. Moreover, the measure remains 

everywhere very close to the level of the linear model. A key reason for these results is that, as 

we have seen, marginal R-squared for R2e starts out at the same level as for the linear model and 

is everywhere independent of  E y .  

 To verify the robustness of these results, the experiments were repeated for values of the 

significance level p, number of observations n and number of variables k representing substantial 

departures from the base case. Specifically, p was assigned values corresponding to an increase 

and a decrease by a factor of 10 from the base case, that is, .10 and .001. Similarly, the number 

of observations and number of variables were set at 10 times the base case, at 1000 and 10, 

respectively.   

Qualitatively, the results are generally the same as in the base case. As in Figure 3, 

measure R2e remains stable as the other three measures fall from very high initial levels. R2cu 

and R2vz stay considerably above the linear model across the board and R2m starts high but falls 

below the linear case for values of  E y  somewhat beyond the .20 level.  
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 With the larger sample size, the pattern for R2e is even flatter and closer to the linear 

model than in the base case. With the larger number of variables, R2e shows a bit more 

separation from the linear model and a more noticeable uptick at .05, but the basic relative 

flatness remains when compared with the other measures. Overall, these experiments are highly 

supportive of the R2e measure. 

 Returning to the reduced-form expression   2 , , ,R i p k n E y , Figure 3 shows that an 

important drawback of R2m, R2cu and R2vz is that they are overly sensitive to the last argument, 

the mean of the dependent variable. In fact, the sensitivities of these three measures to each of 

the remaining reduced-form arguments also present clear departures from the linear model.  

 Each panel of Figure 4 shows the values of the partial derivates of the pseudo R-squared 

measures with respect to one of the reduced-form parameters. Again, the base case is 

.01, 1, 100p k n    and the value of  E y  is allowed to run in the horizontal axis from .05 to 

.50. Since k is typically a small integer, sensitivity to k is calculated as a partial difference from 

1k   to 2k  . Each of the four panels also includes the corresponding partial derivative for the 

linear model, which is constant in each plot since R-squared is independent of the mean of the 

dependent variable. Their values are 1.67, .0238, .0006 and 0  , respectively. 

 We observe in Figure 4 that the partial derivatives of R2e are much more consistent 

across DDV mean levels that the derivatives of the other measures and that they are closer to the 

constant levels of the linear model. The quantitative divergences of the other three measures are 

substantial. Even in the case of the number of observations n, where all four measures exhibit 

very low sensitivity, as expected, R2e is much more stable than the others in relative terms. 
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 The last panel of Figure 4 shows that R2e is less sensitive to  E y  than all the other 

measures by two orders of magnitude for any starting value of  E y . For the other measures, 

this considerable dependence on  E y  compromises the consistency of their interpretability as a 

measure of fit across dependent variables with different means.8 

 We end this comparative analysis with a caveat. One danger implicit in the results of this 

section is that a strategically minded researcher might choose to report R2cu or R2vz in their 

work, particularly the latter, because all indications are that they tend to overstate the fit of the 

model and would thus portray it in the best possible light. Of course, it would then be up to the 

alert and informed reader or reviewer to insist on the use of R2e for accuracy of representation. 

 

6. Conclusions 

 If the evidence presented in favor of the measure R2e in Estrella (1998) was compelling, 

the further evidence presented here is conclusive. Focusing on the four measures that earlier 

research found have the better properties, the present investigation provides greater depth of 

analysis and includes new tests that highlight the benefits and drawbacks of each of the four 

measures.  

 Each measure has some positive qualities. For instance, R2m is linearly related to the 

entropy ratio that captures the proportion of information in the dependent variable that is 

explained by the model. Measure R2cu incorporates the exponential form of the linear model and 

 
8 Hemmert et al. (2018, Table 4) examine the sensitivity of the four pseudo R-squared measures with respect to k, n 
and the DDV mean using meta-analysis of 274 published logistic regression models. They conclude that R2m 
performs best because it appears to be less sensitive in their calculations to changes in the reduced-form parameters. 
However, their procedure does not control for p, so the reported values of the measures could correspond to any 
level of significance and there should be no expectation of constancy or low sensitivity to the parameters. 
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is one of only two measures that converge to the linear model R-squared function if the 

boundedness afflicting the DDV statistic is removed.  

 Going back to the three criteria proposed in Section 2, all four measures considered 

clearly satisfy the first two criteria. It is the third criterion, regarding the rate of growth of the 

measure, that presents a severe challenge for all but one of the measures. Section 4 shows that 

the derivative and marginal R-squared of R2e are far more comparable to the linear model than 

the others. Moreover, in the quantitative analysis of Section 5, R2e has robust internal 

consistency and consistency with the linear model R-squared in assessing the fit of a DDV 

model. The differences are stark. 

 Why have some researchers and some statistical packages continued to use other 

measures in the last two decades? One reason could be that they are unaware of the literature. An 

internet search of reviews of pseudo R-squared measures during that period suggests that some 

of the reviewers are not familiar with the more recent work. Other reasons might be strategic, as 

in the example suggested at the end of the previous section regarding the use of measures that 

tend to overstate the fit of the model.  

 Developers of statistical software packages, as professional specialists in the field, should 

be aware of the literature and should provide more than an indiscriminate list of conceivable 

measures. If R2e is not included in a package or if no guidance is provided with respect to the 

choice of pseudo R-squared in the documentation for DDV model routines, the package has to be 

considered deficient in light of the evidence presented here.  

 The main issue is a practical one, to select the right tool to understand and interpret the 

statistical results of DDV models used in a broad range of empirical applications. Researchers, 
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reviewers, statistical software developers and anyone else who uses DDV models as producer or 

consumer of applied research should be aware of the evidence in this paper. 
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Table 1. Pseudo R-squared functions  2 ,R i A B , derivatives and limits 

 R2e R2m R2cu R2vz 

 2 ,R i A B  
1 1

BA
B

   
 

  
A
B

   
 

1 exp
1 exp

A
B

 
 

   
 

1
1

A A
B B




  

2R i A    1

1
BA

B


  
 

 
1
B

  
 

exp
1 exp

A
B


 

 
 2

1
1

B
A B




 

Marginal 2R i  1
1 A B

  1
B A

 
 
1

1 exp A B 
 

   
1

1
B

B A A


 
 

lim 2R i
B

  1 exp A   0    1 exp A   
1

A
A

 

Notes: , , ,i e m cu vz . Marginal   12 1 2 2R i R i R i A    .  
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Figure 1. Upper bound B as a function of E(y) 

 

Note: The vertical lines at .05, .20, .50 correspond to illustrations in the text. 
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Figure 2. Scaling of pseudo R-squared measures 

  

 

 

Notes: Measures in the first panel are shown before scaling by the respective multiplicative 
factors. In the first three panels,   .05E y   and 0 .397A B   . In the bottom right-hand 

panel,   .50E y   and 0 1.386A B   .  
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Figure 3. Pseudo R-squared measures as functions of  E y   

 .05 .50E y  , chi square p = .01, 100n   and 1k    

 

Note: Linear model R-squared (R2lin) is included for reference purposes. 
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Figure 4. Sensitivity of pseudo R-squared measures to each of the reduced-form arguments 

  

 

  

Notes: The sensitivities are the partial derivatives (partial difference for k) of   2 , , ,R i p k n E y  

evaluated at .01, 100, 1p n k    for the range of values  .05 .50E y   as indicated in the 
horizontal axis of each panel. Partial derivatives for the linear model (Lin), which do not depend 
on  E y , are included for reference.  
 

 

 


