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Abstract 

The 3-month U.S. Treasury yield has persistently exceeded the 10-year yield before every 
recession since 1968, but at no other times in that period. A probit model developed in 1989 
established statistically that the difference between these two yields is a reliable leading indicator 
of recessions, but the model requires an exogenous benchmark to gauge the severity of the 
recession probability signals. This paper presents an alternative calibrated recession probability 
model that makes use of statistical analysis of the historical data to derive intuitive probability 
values endogenously. 
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1. Introduction 

A large body of research has demonstrated that spreads between long-term and short-term 

government interest rates are reliable leading indicators of future recessions. These spreads have 

been used in dichotomous dependent variable (DDV) models to forecast recessions one year 

ahead, with strong in-sample and out-of-sample performance. The fitted variables in these 

models correspond to probabilities that a recession will occur at a specific time in the future. 

One drawback of the original recession probability model is that the magnitudes of the 

spikes in estimated probabilities that precede recessions tend to be lower than intuition would 

suggest. For example, recessions are accurately forecast if a benchmark level of 30% is used to 

gauge the strength of the signal, rather than 50% or higher, as might be expected. The predictive 

power of the model is not impaired, but the interpretation of the probabilities requires some 

adjustment. 

 This paper proposes a statistical modeling approach designed to improve on existing 

models in two important respects. First, it starts with statistical analysis of the historical data for 

the recession and predictive variables, examining their individual and joint time-series 

properties. Second, it restructures both sides of the original probit equation to calibrate the model 

endogenously and produce more intuitive recession probabilities. A “coin toss level” form of the 

explanatory side facilitates incorporation of results from the statistical analysis of the series. 

 The resulting model can serve as a warning system to gauge the level of recession risk at 

any time during the business cycle. The model allows for reliable forecasts that identify 

recessions well in advance with readily interpretable probability estimates. For example, the 

recession probabilities derived from the model since 1968 reach well above 50% in the periods 

leading up to each of the eight recessions, but remain under 50% at all other times.  



2 
 

 The paper first examines the original recession probability model, as well as critiques and 

extensions designed to produce more intuitive calibration of the model’s probabilities. Generally, 

the drawback of these earlier proposals is that they are applicable in practice only within the 

estimation sample and do not fare well in terms of out-of-sample forecasting. 

The next step is to analyze the time-series properties of the term spread and the recession 

DDV as well as their empirical relationship. The calibrated recession probability model 

integrates those statistical results to produce endogenous probability estimates that conform well 

with intuition.  

 

2. The original recession prediction model, extensions and critiques 

 The association of the yield curve with the business cycle goes back almost as far as the 

concept of the cycle itself. Mitchell (1913), in a work that set the groundwork for the modern 

definition of the cycle, tabulated the relationship between long- and short-term interest rates and 

subsequent economic slowdowns, which he called “depressions.” Later, Kessel (1965) showed 

renewed interest in the topic, examining how rates of different maturities varied over the cycle.  

In both cases, however, the approach was descriptive, employing graphs, tables and 

general discussion rather than statistical methods or models. A descriptive approach was also 

employed later by Fama (1986) and Stambaugh (1986), who demonstrated graphically that 

forward interest rates tended to increase before expansions and to decrease before recessions. 

In the late 1980s, research turned to more explicit models using the term spread as a 

predictor of future real economic growth. Published work included Laurent (1988), who used 

lags of the spread between 20-year Treasury yields and the federal funds rate to predict real GNP 
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growth, and Harvey (1988), who used lags of estimated real Treasury rates at 3-month and 10-

year maturities to forecast real consumption growth. 

 Estrella and Hardouvelis (1989, 1991) introduced the first formal statistical model that 

used the term spread to forecast recessions. Estimates showed that the spread was strongly 

significant in a probit model to predict recessions four quarters ahead. Other contemporaneous 

variables such as the real federal funds rate, the index of leading indicators, real GDP growth and 

inflation were not significant singly or jointly when added to the equation. 

The analysis also showed that there was a clear spike in the estimated recession 

probabilities preceding each of the recessions that started in 1970, 1974, 1980 and 1981. Since 

that time, similar spikes have been observed prior to the four subsequent recessions (1990, 2001, 

2008, 2020). Moreover, this indicator has not given any false positive signals in the period since 

1968, that is, there have not been other spikes comparable in magnitude to those observed before 

recessions. 

 The probit equation introduced in the 1989 paper is 

    0 11|t k t tP R S F S     ,  (1) 

where tR  is a recession indicator with value 1 if period t is in a recession and 0 otherwise, tS  is 

the spread between a long-term rate and a short-term rate at time t and F is the Gaussian 

cumulative distribution function.  

 Estrella and Hardouvelis (1989, 1991) used quarterly data and a one-year predictive 

horizon, 4k  , to estimate the model. The recession indicator was derived from the business 

cycle turning point dates of the National Bureau of Economic Research (NBER).1 The long-term 

 
1 The NBER announces dates of peaks and troughs of the business cycle. The standard 
assumption is that recessions start on the month or quarter following the peak and end on the 
month or quarter of the trough. 
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rate was the yield on 10-year U.S. Treasury securities and the short-term rate was the bond-

equivalent yield on 3-month U.S. Treasury bills. Both yields were quarterly averages of monthly 

average rates.  

 The Estrella-Hardouvelis modeling approach has been employed in much of the 

subsequent literature, including applications to other countries as in Bernard and Gerlach (1998) 

and Duarte et al. (2005), variations in the form of the model as in Chauvet and Potter (2005), 

Kauppi and Saikkonen (2008) and Österholm (2012), and testing against other predictive 

variables as in Estrella and Mishkin (1998), Filardo (1999) and Rudebusch and Williams (2009).  

 It seems remarkable that a single economic variable that is easily and broadly accessible 

contains so much information about the future prospects for a recession, which by definition 

adversely affects the entire economy. Given its discernible successes, the term spread has 

attracted interest beyond academic researchers to reach financial practitioners and the press, 

though not always with the requisite level of rigor. 

 Notwithstanding the success and popularity of the original probit model, it has two 

characteristics that have raised questions about its calibration and interpretability. Chauvet and 

Potter (2005) identified these properties, demonstrated their effects, and suggested various fixes.  

 The first characteristic is that the parameter estimation method treats monthly or quarterly 

recession observations as independent events, making no provision for serial correlation in either 

the recession DDV or the predictive term spread variable. Parameter estimates are statistically 

consistent, but for the purpose of statistical inference, standard errors need to be adjusted for 

serial correlation. Empirically, both variables in the model exhibit strong positive serial 

correlation. 
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 The second characteristic is that, although the probabilities produced by the model 

contain clear peaks that correspond to forecasts of actual recessions, the magnitudes of those 

peaks vary substantially across recessions. A probability level of 30% has been suggested as a 

time-consistent threshold for a reliable recession signal, but this level is not ideal for an intuitive 

interpretation of the recession probabilities. 

The 30% benchmark is meant to be applied to the estimated probability of the event that a 

single future monthly observation will be in a recession. Every instance since 1968 in which the 

30% threshold has been crossed has been followed by an actual recession a few months later. So, 

taking each recession as a single event, application of the 30% threshold has been perfectly 

accurate in predicting whether a recession will soon follow. 

 The calibrated model proposed in the present paper deals expressly with the issues of 

serial correlation and interpretability. First, the time series of the dependent and predictive 

variables are analyzed both separately and jointly in order to develop the modeling strategy. 

Second, the structure of the probit model is reformulated to allow for calibration that reflects the 

findings of the time series analysis and produces recession probabilities that accord more closely 

with intuition. In addition, the model is subjected to temporal stability tests to ensure that the 

results are consistent with the current properties of the data. 

 The calibrated model retains the excellent real-time predictive properties of the original 

model at a 12-month forecast horizon. However, the level of the estimated probabilities is more 

in line with intuition and does not require the additional step of identifying a benchmark for the 

interpretation of the results. 
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 Before proceeding to the construction of the calibrated model, consider first the solution 

proposed by Chauvet and Potter (2005) (CP) to deal with the two issues. They employ a latent 

variable interpretation of the probit model in which the latent variable *
tY  has the dynamic form 

 * *
0 1 2 1t k t t k t kY S Y          .  

If 2 0   and t  is serially independent and normally distributed with mean 0 and variance 1, the 

model reduces to equation (1) with    *1| 0 |t k t t k tP R S P Y S    .  

CP allow for nonzero 2  and heteroskedastic t , the latter implemented by estimating 

different   parameters for each individual business cycle. The complicated likelihood function 

is derived from the joint distribution of the  s  series and is evaluated using the Gibbs sampler 

to estimate the parameters of the model. 

The in-sample empirical results produce a much closer fit with the data than the original 

model. Recession probabilities line up very well with actual recessions and the peaks are 

consistent across recessions. The flexibility provided by the inclusion of the adaptable latent 

variable and the allowance for heteroskedasticity clearly enhances the fit of the model. 

For out-of-sample forecasting, however, the model is limited by the unobservability and 

unpredictability of both the latent variable and the distribution of the disturbance. For example, 

CP report that, in contrast with the original model, the CP model missed the 2001 recession. 

After a thorough case study of the period 2001-2002, they argue that “The fact that the simple 

models predict a recession in 2001 is not necessarily a virtue. The forecasts from these simple 

models did not allow for any updating of the probability of a recession as 2001 proceeded.”  
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The CP model has the edge in within-sample analysis and historical classification of 

recession periods after the fact, but for real-time forecasting purposes, accuracy has to be 

considered a virtue and the original model performs better.  

 

3. Serial correlation 

 The likelihood function of the original probit model treats each observation as 

independent. It does not make use of the fact that recession months or quarters occur 

consecutively in the data or that the term spread is strongly serially correlated. Econometric 

theory indicates that parameter estimates are nonetheless consistent, that is, they should converge 

to the correct values as the number of observations increases, but they do not directly incorporate 

all the known properties of the data. How prejudicial is this omission to the accuracy of the 

model? 

 Consider the serial correlation of the variables in the model by themselves and in 

connection with the original model. It is clear that the dichotomous recession variable is serially 

correlated, essentially by construction. The NBER (2022) states that “The NBER's traditional 

definition of a recession is that it is a significant decline in economic activity that is spread 

across the economy and that lasts more than a few months.”  

The definition ensures that recession months occur consecutively and thus gives rise to 

serial correlation. The solid curves in Figure 1 show that this autocorrelation persists for about 12 

months and that it is driven mainly by a first-order partial autocorrelation of .891.2 

 
2 These and all subsequent estimates in the paper are based on monthly NBER recession dates 
and monthly averages of the 10-year and bond-equivalent 3-month Treasury yields. 
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 The variable used as a predictor, the term spread, is the difference between two interest 

rates that are both serially correlated and correlated with one another, again resulting in serial 

correlation. However, it is important to note that this autocorrelation is not necessarily 

detrimental to the predictive power of the model since it could help model the autocorrelation of 

the dependent variable. 

 Figure 1, where the spread is represented by the dotted lines, shows a very persistent 

autocorrelation that remains positive for about two years. Again, the driver is a first-order partial 

autocorrelation, in this case .956, which is somewhat higher than the corresponding statistic for 

the dependent variable but is comparable in magnitude. 

 The original probit model produces recession probabilities by applying a nonlinear 

function to the term spread as shown in equation (1), with the parameters evaluated so as to fit 

the dependent variable as closely as possible using the likelihood function as metric.3 Thus, by 

construction, these probabilities inherit the serial correlation of the model’s variables, as shown 

by the dashed lines in Figure 1. The autocorrelation of the fitted recession probabilities is slightly 

less persistent than that of the spread and is driven by first-order partial autocorrelation of .934. 

As may be expected, these results lie between those of the dependent and independent variables. 

The CP paper maintains that “in the standard probit model conditional on the observed 

yield, the probabilities of recession states are independent of each other, which follows directly 

from the assumption of independent errors.” This claim is clearly disproven by the empirical 

results in Figure 1. In the framework of the CP model, the original model is estimated as if the 

disturbance t  is serially independent, but the probabilities on either side of equation (1) clearly 

need not be. 

 
3 Model estimate is reported in Table 5, line 1. 
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More generally, the fact that the recession variable is serially correlated is not necessarily 

detrimental to the accuracy of the model. To the extent that the time-series properties of the 

dependent variable are shared by the independent variable at a stable lag, the existence of these 

dynamic properties can serve to enhance the predictive power of the model. 

There are three main ways of adjusting the original model to incorporate serial 

correlation directly: adding lags of the dependent variable as in Kauppi and Saikkonen (2008), 

adding a latent variable and its lags as in Chauvet and Potter (2005) and adding lags of the 

explanatory variable. The latter option is rarely seen because only one lag of the term spread 

tends to be significant in recession prediction models. 

The problem with the other two alternatives is that data for the added components are not 

available for use in out-of-sample forecasts. NBER turning point dates are announced well after 

the fact and other forecasters do not fare any better. Forecasting the lag of the DDV is just as 

hard as forecasting the DDV itself. The latent variable, of course, is never observed. Even if the 

model is successful in fitting the latent variable within the estimation sample, forecasting it out 

of sample is much more difficult, as the CP results suggest. 

To answer the question posed at the beginning of this section, the absence of explicit 

dynamics in the original model does not seem to be materially prejudicial to its accuracy. The 

fact that the independent and dependent variables are comparably serially correlated at a stable 

lag contributes to the accuracy of the model. Moreover, in view of the lack of viable alternatives 

for out-of-sample forecasting, the use of the standard probit estimator seems reasonable. 

 

4. Negative term spreads and recessions 

 A closer look at the relationship between the term spread and the recession variable 

suggests a strategy for calibrating the recession probability model without compromising its 
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ability to produce accurate out-of-sample forecasts. In fact, it is at this level of analysis that the 

term spread has a perfect predictive record since 1968, and the corresponding quantitative 

statistical results may be brought to bear on the issue of model calibration. 

 The term spread is specified as the monthly average of the difference between 10-year 

and 3-month bond-equivalent U.S. Treasury yields. A look at the history of this spread in Figure 

2 shows why interest has focused on yield curve inversions, that is, on negative values of the 

spread, as predictors of recession. Estrella and Hardouvelis (1989, 1991) presented evidence that 

the spread had been negative in anticipation of the four recessions prior to 1989. Figure 2 shows 

that, in addition, the spread was negative before each of the four recessions that have occurred 

since then.  

 Table 1 lists every month in which the spread was negative between 1968 and 2020. The 

table confirms that inversions occurred in anticipation of the eight recessions in this period, with 

some variation in lead times and in the persistence of the inversions. In the cases of the first four 

recessions, the spread continued to be negative for varying amounts of time after the start of the 

recession. In the last four cases, the spread was no longer negative by the time the recession 

started. One possible explanation for this change is that the Federal Reserve followed a different 

monetary policy strategy in the two subperiods. 

 Yield curve inversions tend to occur when the Federal Reserve tightens the stance of 

monetary policy beyond a certain level, which may vary over time. For example, Furmann and 

Otrok (2013) present evidence that a major influence on the term spread is the Federal Reserve 

reaction to news shocks, in particular those connected with total factor productivity. Viewed in 

this light, Table 1 suggests that Federal Reserve reactions were more forceful and persistent in 

the earlier part of the period. 
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 Table 2 provides a count of the number of negative monthly spreads connected with each 

recession in Table 1, followed by the length of the recession. The table suggests that there is a 

relationship between the persistence of negative spreads before and during a recession and the 

length of the subsequent recession. Specifically, a recession in this sample period lasted more 

than 9 months if and only if there were more than 9 months of negative spreads.  

The only exception to this rule is the recession that started in February 1980, which is the 

first of the “twin recessions” of 1980-1982. During this episode, monetary policy targets were set 

with reference to the money supply and the direction of the federal funds rate changed abruptly 

more than once, whipsawing from 19.96% in early April 1980 to 7.65% in early August and 

back to 22.36% during July 1981. The economy responded with a brief recovery before plunging 

into a second deeper recession. Taken together, the twin recessions lasted a total of 22 months 

and were associated with 30 months of negative spreads.  

 A key question in the construction of a method to predict recessions using the term 

spread is whether there is a benchmark level of the spread that helps distinguish recessions from 

soft landings or other non-recessionary periods. The data in Table 1 shows that recessions are 

always preceded by negative spreads, but is zero the best benchmark level? 

 Two questions can help establish a functional benchmark. First, what range of values of 

the term spread precedes recessions within a reasonable horizon? Second, what range of values 

does the spread exhibit when it has reached a local minimum, but a recession has not ensued 

within a reasonable horizon? Of course, the concept of reasonable horizon must be defined more 

precisely. 
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 Table 3 addresses the first question by examining the magnitude and lead time of two 

types of low values of the spread, the first negative value prior to each recession and the lowest 

value observed in the 12 months prior to the start of the recession. 

 Tabulation of the first negative value helps address the question of forecast horizon. 

Among the eight recessions, the first negative occurred between 6 and 17 months prior to the 

recession start, with a median lead time of 12 months. These first negative values range in 

magnitude from -.52% to -.09%.  

 The tabulation of the lowest value imposes a time horizon of 12 months, but these 

minima occur closer to the start of the recession than the first negative values and the horizon 

constraint is for the most part not binding. The only case in which a minimum value lies slightly 

outside the 12-month horizon is the August 1990 recession. The lead time of the minimum 

values ranges from 2 to 10 months, with a median value of 6. 

 Based on the information in this table, which spans 53 years and contains 8 recessions, 

we may conclude that whenever the monthly value of the spread fell below -.08%, a recession 

ensued within 12 months. While there is no guarantee that this result will hold uniformly in the 

future, the sample is large enough to suggest that -.08% is a reasonable practical benchmark 

going forward. 

 The second question requires the identification of local minima of the monthly spread 

within in the 53-year sample, whether or not those minima consist of negative values or are 

related to a recession. Table 4 lists all local minima, defined as the lowest values of the spread in 

a period ranging between 12 months before and 12 months after the observation. 

 Of the 13 cases in Table 4, seven of the spreads are negative, and they all correspond to 

pre-recession minima listed in Table 3. As noted earlier, the minimum value of the spread in 
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anticipation of the August 1990 recession occurred outside the 12-month horizon, and we see in 

Table 4 that it was observed 14 months before the recession started.  

For all other cases, the local minima of the spread are positive and the time to the next 

recession is at least 31 months, suggesting that relatively low positive values of the spread are 

not indicative of an impending recession. This pattern is also confirmed by the fact that the 

negative spreads are followed by increases in the unemployment rate during the following 24 

months, whereas the positive values are followed by decreases in unemployment, as shown also 

in Table 4. 

 Thus, when the local minimum of the spread was .08% or higher, a recession did not start 

within the following 30 months. Putting together this result with the parallel finding from Table 

3, we see that recessions aways followed within 12 months when the spread was -.08% or lower, 

whereas recessions did not follow within 30 months when the spread was .08% or higher. Any 

benchmark value that falls between those two levels would be able to discriminate perfectly 

between recessions and non-recessions with a lead time of one year to the start of the recession. 

  This level of discrimination is so strong that standard methods do not allow for the 

calculation of a single benchmark within the range .07 .07tS   . For example, application of 

models like probit or logit fails when discrimination is perfect, and discriminant analysis is 

designed for continuous random variables rather than for dichotomous variables such as the 

recession indicator. 

 In the following section, the statistical results of this section are combined with a 

modified specification of the probit model to construct a calibrated recession probability model 

that combines accuracy and interpretability. 
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5. Calibrated recession prediction model 

 The calibrated model modifies both sides of the probit specification of the original model, 

equation (1), in order to make the resulting probabilities of recession more intuitive. The 

alternative dependent variable is more adaptable than the original and the mathematical form of 

the predictive function makes it easier to apply the statistical analysis of the previous section.  

 The dependent variable of the calibrated model is defined as an index of the event that a 

recession starts within the following 12 months.4 This specification provides more flexibility 

than the very focused dependent variable of the original model, which requires forecasting 

whether or not a single observation one year ahead is in a recession. Empirical estimates confirm 

that a closer fit may be obtained with the more inclusive dependent variable of the calibrated 

model. 

 However, use of the alternative dependent variable requires some care. First, the 

flexibility of the variable makes it difficult to select an appropriate forecast horizon. In the 

original model, the forecast focuses on a single future period regardless of the horizon, which 

may be extended one month at a time until the best fit is obtained.  

With the alternative dependent variable, extending the forecast horizon generally 

increases the chances of obtaining a correct classification and tends to improve the fit of the 

model. The reason is that the probability of the composite event corresponding to the DDV tends 

to increase with each additional month included in the horizon.5 Thus, a simple comparison of 

results for different forecast horizons may be misleading. 

 
4 An analogous dependent variable is used in Engstrom and Sharpe (2018) with quarterly data. 
Leamer (2022) defines a DDV based on an event that is formally equivalent to the one used here, 
described differently, with other additional conditions.  
5 The probability that a recession starts in month t or in month t+1 is essentially the sum of the 
two probabilities because the joint probability of the two events is virtually zero. 
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The analysis of the previous section is helpful in dealing with this issue, since it 

demonstrates that a 12-month horizon is reasonable for predicting the start of a recession using 

the term spread. Results showed that a benchmark level of the spread in the range 

.07 .07tS    identifies recessions perfectly in the sample period with a 12-month horizon. 

 This choice of horizon is also supported by sensitivity analysis of the original model, in 

which the timing of the DDV is more precise. Model (1) was estimated with data from January 

1968 to December 2019 and with horizons ranging to k from 1 to 24 months. The end date for 

the estimates is set to accommodate the longest forecast horizon and the delay in NBER turning 

point announcements. The value 12k   maximizes the likelihood of the model.  

A second issue with the new dependent variable is that the resulting empirical estimates 

are not as stable over time as those obtained with the original model. Estrella, Rodrigues and 

Schich (2003) showed that tests for unknown breakpoints are not able to detect a break in the 

original model using data from either the United States or Germany, where the model fit is very 

strong. The solution to this issue is to apply breakpoint testing and, where the tests find 

statistically significant evidence of a break, the estimation period is adjusted so as to employ 

estimates consistent with the most recent data.6 

 To summarize, the left hand side of the calibrated model equation takes the form 

 12 1|t tP B S , where 12
tB  is an index variable that takes on a value of 1 if an NBER-dated 

recession begins in any month from 1t   to 12t   and is otherwise 0. 

 The form of the right-hand side of the probit equation is also adjusted so as to make 

effective use of the statistical analysis of the previous section. Instead of the standard probit form 

 
6 This strategy is somewhat analogous to the treatment of heteroskedasticity in Chauvet and 
Potter (2005), but only one break is required, as the empirical estimates will show. 
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 0 1F x  , the argument of the normal cumulative distribution function is expressed as 

  F m x c . If the model is estimated without constraints, the two forms are mathematically 

equivalent with 1m   and 0 1c    . 

The parameter c is interpreted as the coin toss level (CTL) of the predictor variable x. At 

this level, the probability that the dependent variable equals 1 is exactly one half, as in a fair coin 

toss. The multiplicative factor m scales the probabilities for other values of x. The form of the 

calibrated model is thus 

     12 1|t t tP B S F m S c   . (2) 

 The analysis of the previous section implies that if .07 .07c   , the beginning of each 

recession will be preceded by observations with probabilities above 50%, whereas for 

observations in which the probability is less than 50%, a recession will not begin within the 

forecast horizon.  

 The strategy then is to estimate model (2) subject to the restriction that .07 .07c   . To 

verify that the resulting estimate is consistent with the data, we need to test that the restriction on 

c is not statistically rejected and also to confirm the stability of the model over the estimation 

period. The base sample covers the 53-year period from January 1968 to December 2020, with 

the end of the period determined by the length of the forecast horizon plus an allowance of 12 

months in recognition of lags in turning point announcements.  

For reference, the first line of Table 5 provides estimates of the original Model (1) over 

the base sample period. Parameter estimates are shown in the table in unconstrained CTL form. 

The fit of the model is in line with past estimates and the results are stable over time in a sup-
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Wald breakpoint test analogous to those of Estrella, Rodrigues and Schich (2003).7 However, the 

estimated CTL c is -.76 and the restriction that .07 .07c    is rejected with p value .047, 

which is consistent with the need for a benchmark lower than 50% to interpret the recession 

probabilities derived from the unconstrained original model.8 

 The second line of Table 5 shows results for the recession probability Model (2), 

estimated without constraints. Again, the point estimate of the CTL falls outside the benchmark 

region from the earlier analysis, but in this case a test of the restriction that .07 .07c    has p 

value .220 and the constraint is not rejected. However, there is evidence of instability over time 

as the sup-Wald test has a p value very close to zero. 

The third line of the table imposes on Model (2) the restriction that .07 .07c    and 

produces similar results. 2R  is .362, just slightly lower than the unconstrained model, and the 

CTL is estimated at the lower bound of the benchmark interval. However, the problem of 

temporal instability remains, with a sup-Wald test strongly indicating that there is a breakpoint at 

October 1981.9 

These results suggest that the constrained Model (2) should be estimated over the sample 

period that starts from the breakpoint identified by the test. For reference, the next line of the 

table also presents estimates of the unconstrained model over this sample period, with two 

 
7 Andrews (1993) shows that a portion of the observations must be excluded as candidate 
breakpoints at each end of the sample so that the estimates converge, and suggests .15 of the 
sample. With a DDV with many consecutive equal values, such as the recession indices, the 
portion excluded frequently has to be larger to guarantee convergence. The present tests use .25 
as in Estrella, Rodrigues and Schich (2003) or .35, depending on the sample period. 
8 This test and others reported in this section are performed with standard errors adjusted for 
heteroskedasticity and autocorrelation with a flat window and lags to 12 months. 
9 When the model is constrained, the CTL constraint is imposed for each of the subsample 
estimates in the breakpoint test. 
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notable results: the estimated value of c is very close to the benchmark restriction range and there 

is no significant evidence of instability within this sample period.  

 The final line of the table uses the sample period starting from the breakpoint and 

imposes the CTL benchmark restriction .07 .07c   . The CTL is estimated at the upper end of 

the range and the constraint is not rejected, with a p value of .894. The model fits the data well, 

with 2 .386R  . Moreover, there is no further evidence of structural instability within the sample 

period. This specification is selected as the calibrated recession probability model. 

 Figure 3 compares the probability functions derived from the original model and from the 

calibrated model, corresponding to lines 1 and 5 of Table 5. These probabilities pertain to two 

different types of events, so they should be different. The main point of the figure is to show that 

the calibrated model approach is better suited to an intuitive interpretation of the probabilities in 

connection with an upcoming recession as a whole, rather than with each recession month 

individually.  

 For example, when the spread is zero, the original model gives a probability of .30, 

whereas the calibrated model probability is .55. As noted earlier, the .30 level has been proposed 

as a benchmark for the original model in connection with a recession as a whole, but the .55 level 

is more reflective of the actual likelihood of an upcoming recession given historical data. At the 

estimated CTL level of the spread, .07, the calibrated probability is .50 by construction, whereas 

the original model probability is only .28. 

 The autocorrelation analysis of Figure 1 provides additional support for the calibrated 

model, represented by the curve with dashes and dots. In particular, the figure shows that the 

autocorrelation properties of the calibrated model resemble those of the dependent variable more 

closely than those of either the spread data or the original model.  
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 Finally, Figure 4 presents the historical performance of the calibrated probability model 

since 1968, as well as out-of-sample forecasts starting in January 2021. Whenever the probability 

that a recession will start within the following 12 months exceeds .50, in other words, the start of 

a recession is more likely than not, a recession did start within the predictive horizon. In fact, the 

peak probability levels in anticipation of each of the 8 recessions in the sample were well above 

.50 in all cases.  

 

6. Conclusions 

 The original recession probability model from Estrella and Hardouvelis (1989, 1991) has 

performed well over the years, but the probability levels arising from the model are best 

interpreted with reference to an exogenous benchmark level. The calibrated recession probability 

model of the present paper has an equivalent level of accuracy and a closer fit with the 

alternative dependent variable. In addition, the predictive recession probabilities produced by the 

model accord more directly with intuition without the need for supplementary benchmarks. 

 The calibrated model produces very strong signals before each of the 8 recessions that 

have been identified by the NBER since 1968. In anticipation of each recession, the model’s 

estimates of the probability that a recession will start within 12 months have spiked to levels 

ranging from .67 to 1.00. At other times in the sample period, the probabilities given by the 

model have been below .50. As of this writing, the model strongly suggests that a recession will 

start in 2023, as Figure 4 shows.10 

 

  

 
10 Results of the calibrated probability model and the original model are updated monthly at 
financeecon.com/yc.html. 
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Table 1. Negative values of monthly average term spread, 1968 to 2020 
Time to start of recession (months) and monthly recession indicator (0/1) 

Dec 1968 -0.11 13 0  Oct 1980 -0.39 10 0 
Jan 1969 -0.28 12 0  Nov 1980 -1.74 9 0 
Feb 1969 -0.11 11 0  Dec 1980 -3.51 8 0 
Apr 1969 -0.12 9 0  Jan 1981 -3.26 7 0 
Jun 1969 -0.07 7 0  Feb 1981 -2.39 6 0 
Jul 1969 -0.51 6 0  Mar 1981 -0.90 5 0 
Aug 1969 -0.51 5 0  Apr 1981 -0.70 4 0 
Sep 1969 -0.16 4 0  May 1981 -3.14 3 0 
Oct 1969 -0.13 3 0  Jun 1981 -2.04 2 0 
Nov 1969 -0.34 2 0  Jul 1981 -1.47 1 0 
Dec 1969 -0.44 1 0  Recession started Aug 1981 

Recession started Jan 1970  Aug 1981 -1.43 0 1 
Jan 1970 -0.35 0 1  Sep 1981 -0.16 -1 1 
Feb 1970 -0.12 -1 1      
     Jun 1989 -0.16 14 0 
Jun 1973 -0.52 6 0  Jul 1989 -0.13 13 0 
Jul 1973 -1.16 5 0  Aug 1989 -0.06 12 0 
Aug 1973 -1.59 4 0  Nov 1989 -0.08 9 0 
Sep 1973 -1.50 3 0  Dec 1989 -0.05 8 0 
Oct 1973 -0.67 2 0  Recession started Aug 1990 
Nov 1973 -1.37 1 0      

Recession started Dec 1973  Jul 2000 -0.09 9 0 
Dec 1973 -0.96 0 1  Aug 2000 -0.44 8 0 
Jan 1974 -1.05 -1 1  Sep 2000 -0.38 7 0 
Feb 1974 -0.39 -2 1  Oct 2000 -0.55 6 0 
Mar 1974 -1.03 -3 1  Nov 2000 -0.63 5 0 
Apr 1974 -1.12 -4 1  Dec 2000 -0.70 4 0 
May 1974 -0.94 -5 1  Jan 2001 -0.13 3 0 
Jun 1974 -0.63 -6 1  Recession started Apr 2001 
Aug 1974 -1.25 -8 1      
Sep 1974 -0.30 -9 1  Aug 2006 -0.21 17 0 
Nov 1974 -0.04 -11 1  Sep 2006 -0.22 16 0 
     Oct 2006 -0.32 15 0 
Nov 1978 -0.15 15 0  Nov 2006 -0.47 14 0 
Dec 1978 -0.41 14 0  Dec 2006 -0.42 13 0 
Jan 1979 -0.61 13 0  Jan 2007 -0.35 12 0 
Feb 1979 -0.58 12 0  Feb 2007 -0.45 11 0 
Mar 1979 -0.73 11 0  Mar 2007 -0.51 10 0 
Apr 1979 -0.65 10 0  Apr 2007 -0.31 9 0 
May 1979 -0.74 9 0  May 2007 -0.10 8 0 
Jun 1979 -0.49 8 0  Recession started Jan 2008 
Jul 1979 -0.64 7 0      
Aug 1979 -0.86 6 0  Jun 2019 -0.14 9 0 
Sep 1979 -1.35 5 0  Jul 2019 -0.08 8 0 
Oct 1979 -1.92 4 0  Aug 2019 -0.36 7 0 
Nov 1979 -1.67 3 0  Sep 2019 -0.23 6 0 
Dec 1979 -2.20 2 0  Feb 2020 -0.05 1 0 
Jan 1980 -1.75 1 0  Recession started Mar 2020 

Recession started Feb 1980      
Feb 1980 -1.07 0 1      
Mar 1980 -3.28 -1 1      
Apr 1980 -2.38 -2 1      
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Table 2. Duration of Recession and Persistence of Negative spreads 

Recession start Duration Negative spreads 

Jan 1970 11 13 

Dec 1973 16 16 

Feb 1980 6 18 

Aug 1981 16 12 

Aug 1990 8 5 

Apr 2001 8 7 

Jan 2008 18 10 

Mar 2020 2 5 

Notes: Recession duration is the number of months from NBER peak to trough. Negative spreads 

is the number of months before and during each recession that the term spread was negative. 
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Table 3. Negative spreads before recessions 

 First negative Minimum in prior 12 months 

Recession start Month Spread Lead Month Spread Lead 

Jan 1970 Dec 1968 -0.11 13 Aug 1969 -0.51 5 

Dec 1973 Jun 1973 -0.52 6 Aug 1973 -1.59 4 

Feb 1980 Nov 1978 -0.15 15 Dec 1979 -2.20 2 

Aug 1981 Oct 1980 -0.39 10 Dec 1980 -3.51 8 

Aug 1990 Jun 1989 -0.16 14 Nov 1989 -0.08 9 

Apr 2001 Jul 2000 -0.09 9 Dec 2000 -0.70 4 

Jan 2008 Aug 2006 -0.21 17 Mar 2007 -0.51 10 

Mar 2020 Jun 2019 -0.14 9 Aug 2019 -0.36 7 

Notes: First negative is first instance of a negative monthly spread in the period leading to each 

recession. Lead time is time in months from first or minimum negative spread to start of the 

following recession. 
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Table 4. Spread Local Minima: Month, Minimum Spread, Lead Time 

Month of 

minimum 

Spread Next recession 

(months) 

Change in 

unemployment 

Aug-69 -0.51 5 2.6 

Aug-73 -1.59 4 3.6 

Dec-80 -3.51 8 3.6 

Sep-84 1.72 71 -0.3 

Mar-86 1.02 53 -1.5 

Jun-89 -0.16 14 1.6 

Oct-93 2.24 90 -1.3 

Nov-95 0.42 65 -1.0 

Sep-98 0.08 31 -0.7 

Dec-00 -0.70 4 2.1 

Mar-07 -0.51 10 4.3 

Jul-12 1.43 92 -2.0 

Aug-19 -0.36 7 1.5 

Notes: Window for local minimum spreads is 25 months. Lead time is time in months from 

minimum spread to start of the following recession and the change in unemployment is over the 

24 months following the month of the minimum. 
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Table 5. Estimates of Recession Probability Models 

Model (1)    12 0 11|t t tP R S F S     , 0 1c    , 1m    

Model (2)     12 1|t t tP B S F m S c   , Constraint: .07 .07c    

Model Sample starts Constr. c m 2R  sup-Wald Breakpoint 

(1) Jan 1968 No -.764(.350) -.685(.144) .247 3.08(.786) None 

(2) Jan 1968 No -.337(.218) -.958(.155) .376 52.7(.000) Mar 2007 

(2) Jan 1968 Yes -.07(na) -1.07(.161) .362 23.8(.000) Oct 1981 

(2) Oct 1981 No .091(.182) -1.90(.497) .386 5.62(.275) None 

(2) Oct 1981 Yes .07(na) -1.86(.455) .386 1.34(.953) None 

Notes: All samples contain monthly data ending December 2020. HAC standard errors (flat 

window, 12 lags) in parentheses; not assigned if constraint is binding. Estrella (1998) 2R . 

Breakpoint test is based on sup-Wald with exact p values (Estrella 2003) in parentheses; .25 

excluded for full sample and .35 for Oct 1981 sample. 
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Figure 1. Autocorrelations and partial autocorrelations 

Recession, spread and fitted probability variables 

 

Note: Calculations use monthly data from January 1968 to December 2020. Estimates based on 

monthly NBER recession dates and monthly averages of the 10-year and bond-equivalent 3-

month Treasury yields. Spread is the difference between the two rates. 
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Figure 2. Term Spread 
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Figure 3. Recession Probability as Function of Term Spread 

 

Notes: The probabilities correspond to the events 1|t k tR S   for the original model and 

12 1|t tB S  for the calibrated model. The shaded region encompasses all values of the spread that 

anticipate recessions in Table 3. 
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Figure 4. Calibrated Model: Probability That a Recession Will Start Within 12 Months 

 

 


